High Quality Factor Mechanical Resonators Based on WSe2 Monolayers
نویسندگان
چکیده
Suspended monolayer transition metal dichalcogenides (TMD) are membranes that combine ultralow mass and exceptional optical properties, making them intriguing materials for opto-mechanical applications. However, the low measured quality factor of TMD resonators has been a roadblock so far. Here, we report an ultrasensitive optical readout of monolayer TMD resonators that allows us to reveal their mechanical properties at cryogenic temperatures. We find that the quality factor of monolayer WSe2 resonators greatly increases below room temperature, reaching values as high as 1.6 × 10(4) at liquid nitrogen temperature and 4.7 × 10(4) at liquid helium temperature. This surpasses the quality factor of monolayer graphene resonators with similar surface areas. Upon cooling the resonator, the resonant frequency increases significantly due to the thermal contraction of the WSe2 lattice. These measurements allow us to experimentally study the thermal expansion coefficient of WSe2 monolayers for the first time. High Q-factors are also found in resonators based on MoS2 and MoSe2 monolayers. The high quality-factor found in this work opens new possibilities for coupling mechanical vibrational states to two-dimensional excitons, valley pseudospins, and single quantum emitters and for quantum opto-mechanical experiments based on the Casimir interaction.
منابع مشابه
Quality Factor Enhancement of Optical Channel Drop Filters Based on Photonic Crystal Ring Resonators
In this paper, a channel drop ring resonator filter based on two dimensional photonic crystal is proposed which is suitable for all optical communication systems. The multilayer of silicon rods in the center of resonant ring enables one to adjust resonant wavelength of the ring and enhance power coupling efficiency between ring and waveguide. Refractive index and radius of multilayer rods insid...
متن کاملInvestigation of Thermoelastic Damping in the Longitudinal Vibration of a Micro Beam
In the design of high Quality factor (Q) micro or nano beam resonators, different dissipation mechanisms may have damaging effects on the quality factor. One of the major dissipation mechanisms is the thermoelastic damping (TED) that needs an accurate consideration for prediction. In this paper, thermoelastic damping of the longitudinal vibration of a homogeneous micro beam with both ends clamp...
متن کاملHigh, size-dependent quality factor in an array of graphene mechanical resonators.
Graphene's unparalleled strength, stiffness, and low mass per unit area make it an ideal material for nanomechanical resonators, but its relatively low quality factor is an important drawback that has been difficult to overcome. Here, we use a simple procedure to fabricate circular mechanical resonators of various diameters from graphene grown by chemical vapor deposition. In addition to highly...
متن کاملEnergy Dissipation in Graphene Mechanical Resonators with and without Free Edges
Graphene-based nanoelectromechanical systems (NEMS) have high future potential to realize sensitive mass and force sensors owing to graphene’s low mass density and exceptional mechanical properties. One of the important remaining issues in this field is how to achieve mechanical resonators with a high quality factor (Q). Energy dissipation in resonators decreases Q, and suppressing it is the ke...
متن کاملEffect of thermoelastic damping in nonlinear beam model of MEMS resonators by differential quadrature method
This paper presents a nonlinear model of a clamped-clamped microbeam actuated by an electrostatic load with stretching and thermoelastic effects. The frequency of free vibration is calculated by discretization based on the Differential Quadrature (DQ) Method. The frequency is a complex value due to the thermoelastic effect that dissipates energy. By separating the real and imaginary parts of fr...
متن کامل